dL-1-(1-Arylalkyl)imidazole-5-carboxylate Esters. A Novel Type of Hypnotic Agents

Erik Í. Godefrol, Pall A. J. Janssen, Cyriel A. M. Van der Lychen, Albert H. M. T. Van Heertcim, avid Carlos J. E. Niemegeers

Sanssen Pharmaceutica n.i., I'esearch Laborotoria, Boerse, Belgimm,
heceived Lagusl 5, 10664

Abstract

A number of 1 -substituted imidazole-5-carbonylic acid esters of type lilb have been synthesized. Nany of these are extremely potent, rapid, and short-acting hypuotic agents in rats.

In these laboratories for a number of years we have been interested in imidazole derivatives as chemotherapeutic agents. During the course of this work we have had occasion to prepare a number of 1 -aralliyl-imidazole-5-carboxylic acid esters. The observation that one of these (I), upon parenteral or oral adininis-

tration to rats, induced a profound liypnotic state prompted us to prepare additional analogs of I, specifically type IIIb, in a effort to further delineate the structure-activity correlations governing this class of compounds.
Whereas certain innidazolones and hydantoins have been described as lypnotic agents, "true" imidazoles, to the best of our knowledge, have hitherto not been known to elicit the hypnotic stave.

The desired analogs (IIIb) were prepared most adrantageously by a modification of the Jones procedure. ${ }^{2}$ To this effect a number of 1-arylalkylanines were treated with ethyl chloroacetate in D.N1F containing triethylamine; the resulcing N-substituted glycine esters were then N-formylated by means of forninic acid in xylene to give II. Solubility considerations in the pyridyl series led us to carry out the alkylations in refluxing benzene. Annides II boiled between 150 and 200° (ca. 1 mml .) and were used as such. Successive treatments of types II with sodium methoxidemethyl formate in THF, followed by reaction of the resulting C -formyl derivative with $\mathrm{HCl}-\mathrm{HNCS}$ afforded IIIa (note the concomitant ester exchange) in yields ranging from $30-74 \%$. Oxidative desulfurizations then proceeded smoothly giving the desired analogs IIIb. A tabulation of these componnds (i.e., $\mathbf{1 - 3 0}$) is offered in Table I.

A desire to determine the pharmacological effect of side-chain alterations dictated the preparation of compounds 44-47 (type IV). Two of these had been described previously as ethyl esters. ${ }^{2}$

Hydrolysis of 2 in ca. 10 N NaOH solution gave the carboxylic acid. From it, via the acid chloride hydro-

[^0]
\[

$$
\begin{aligned}
& 44, \mathrm{R}=\left(\mathrm{C}_{6} \mathrm{H}_{5}^{2}\right. \\
& 45, \mathrm{R}=\left(\mathrm{CH}_{6} \mathrm{C}_{6} \mathrm{H}_{5}\right. \\
& 46, \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5} \\
& 47, \mathrm{R}=\mathrm{CH}^{\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}}
\end{aligned}
$$
\]

chloride, ester's 31-42 were obtained. In a similar fashion 20 was converted to 43 .

Experimental

All melting points were recorded on a Fisher-Johns block. The reported vields were based frequently on one run and do mot necessarily reflect the optinnm ones attainable.

As illustration the preparation of 2 and its derivatives will be alfered in detail.
\mathbf{N}-(α-Methylbenzyl)-N-formylglycine Ethyl Ester (II, $\mathbf{R}=$ $\left(\mathrm{H}_{3} ; \mathrm{Ar}=\mathrm{C}_{6} \mathrm{H}_{5}\right.$).--To a solution of 132 g . (1.09 moles) of $\alpha-$ methylbenzylamine in 100 ml. of 1 DMF were added stuccessively 110 g . (1.09 moles) of triethylamine and 133 g . (1.09 moles) of ethyl chloroacetate. A gradual temperature increase to 50° was noted, and the mixure was stirred overnight. Ether was then added and most of the triethylanine hydrochloride was renioved by filtration. The filtrate was washed thoroughly, dried, and stripped, leaving 219 g , of crude N -(α-methylbenzy $)$ glycine ethyl ester. This was dissulved in 600 ml . of xylene, 55.2 g . (1.2 moles) of absolute formic acid was added, and the solution was reflused in an apparatns equipped with a water trap. Water evolution was complete within \because hr. Scrubbing of the cooled solution with 200 fomic acid, water, sodium bicarbonate solntion, and water, respectively, followed by drying and evaporation of solvent gave a crude product: it was fractionated to furnish 144 g . ($56^{\circ} \mathrm{g}$ yield) of a pale yellow oil, b.p. $\left.165-17\right)^{\circ}$ (0.8 mm .)
1)L-1-(1-Phenethyl)-2-mercaptoimidazole-5-carboxylic Acid Methyl Ester (1). Solium methoxide (0.65 mole) was freshly prepared in THF by addition of 20.8 g . (0.65 mole) of methyl alcohol in 50 mul. of THF to 29.9 g . (0.65 mole) of 50% paraffinic sodiun dispersion in 400 ml. of THF. To this suspension, at 10°. was added in one portion and with stirring, a solution of 108 g . (1.80 moles) of methyl formate and 144 g . (0.61 mole) of $\mathrm{N}-\left(\alpha^{-}\right.$ methylbenzyl)-N-formylglycine ethyl ester. After stirring it 10° for 1 hr., the reaction was allowed to proceed overnight, The solvent was subsequently stripped and replaced with 600 ml . of water; the paraffin was washed out with ether. Concentrated HCl ($114 \mathrm{ml} ., 1.35 \mathrm{moles}$) was added, followed by 600 ml . of methyl alcohol. After keeping the temperature at 40° for 0.5 hr ., there was introduced a solution of 90 g . $(0.93$ nole) of potassinm thiocyunate in 200 ml of water. Within a few hours product started crystallizing ont; stirring was continued overnight. The pale yellow imidazole was filtered off: the crude material ($100 \mathrm{~g} ., 63$ G yield) had m.p. ca. 130°. Analytical material, m.p. $133-134^{\circ}$, was prepared from 850 methanol.

$\therefore 12.21$. Found: (, $54.72 ; H, 520 ; \mathrm{N}, 10.77 ; \mathrm{S}, 11.95$.
111-1-(1-Phenethyl)imidazole-5.carboxylic Acid Methyl Ester Hydrochloride (2).-Compound 1 ($66 \mathrm{~g} ., 0.25 \mathrm{~mole}$) was added

Compd.	X	12	R'	Ar	M.p. ${ }^{\circ} \mathrm{C}$.	Yield, \%	Ref. to startings material	Forruula	C-Calerl., \% -			oundH		N
1	SH	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{3}$	133-134	63	a	$\mathrm{C}_{13} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	59. 53	5.38	10.68	59.72	5.40	10.77
2	H	CH_{3}	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{3}$	173-174			$\mathrm{C}_{13} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	58.53	5.67	10.50	58.63	5.94	10.73
3	SH	CH_{4}	CH_{3}	$p-\mathrm{FC}_{6} \mathrm{H}_{4}$	135-136	65	a	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2} \mathrm{~S}$	55.70	4.68	9.99	55.79	4.77	9.91
4	H	CH_{3}	CH_{3}	$p-\mathrm{lC}_{6} \mathrm{H}_{4}$	137-138			$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	55.84	4.96	9.84	55.10	5.17	9.74
5	SH	CH_{3}	$\mathrm{CH}_{\text {I }}$	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	164-165	63	a	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$	52.61	4.42	9.44	52.80	4.49	9.37
6	H	CH_{3}	CH_{3}	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	146-148			$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	51.84	4.69	9.30	51.92	4.95	9. 24
7	SH	CH_{3}	CH_{3}	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	179-180	74	u	$\mathrm{C}_{41} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$	52.61	4.42	9.44	52.79	4.64	9) 54
8	H	CH_{3}	CH_{3}	$m-\mathrm{ClC}_{6} \mathrm{H}_{4}$	153-155			$\mathrm{C}_{13} \mathrm{H}_{42} \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	51.84	4.69	9.30	51.69	4.91	9.33
9	SHI	Cl_{3}	CH_{3}	${ }_{0}-\mathrm{ClC}_{6} \mathrm{H}_{4}$	187-189)	46	a	$\mathrm{C}_{1:}: \mathrm{H}_{12} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$	52.61	4.42	9.44	52.43	4.71	9. 63
10	H	CH_{3}	CH_{3}	${ }_{0}-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$178 \cdot 180$			$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	51.84	4.69	9.30	51.82	4.79	9.51
11	SII	CH_{3}	CH_{3}	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	157-161	52	a	$\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$	45.76	3.84	8.21	45.91	3.91	8.28
12	H	CH_{3}	CH_{3}	$p-\mathrm{BrC}_{6} \mathrm{H}_{4}$	137-139)			$\mathrm{C}_{13} \mathrm{H}_{43} 13 \mathrm{rN} \mathrm{N}_{2} \mathrm{O}_{4} \cdot \mathrm{HCl}$	45.17	4.08	8.11	44.85	4.32	7.91
13	SH	CH_{5}	CH_{3}	$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	140-141	60	a	$\mathrm{C}_{44} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	57.53	5.52	9.28	57.63	5.80	9.74
14	H	CH_{3}	CH_{3}	$p-\mathrm{CH}_{3} \mathrm{OC}_{6} \mathrm{H}_{4}$	131-132			$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \cdot \mathrm{HCl}$	56.66	5.78	9.44	56.35	5.88	9.19
15	SH	CH_{3}	CH_{3}	$p-\mathrm{CH}_{8} \mathrm{C}_{6} \mathrm{H}_{4}$	$163-165$	50	a	$\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	60.36	5.84	10.10	60.59	6.05	10.40
16	H	CH_{5}	CH_{3}	$p-\mathrm{CH}_{6} \mathrm{C}_{6} \mathrm{H}_{4}$	167-168			$\mathrm{C}_{44} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	59.89	6.10	9.98	59.57	6.16	10.00
17	SH	CH_{4}	CH_{3}	$m, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	137-139	50	a	$\mathrm{C}_{12}: \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	62.05	6.25	9.65	62.16	6.45	9.60
18	H	CH_{3}	CH_{3}	$m, p-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	158-160			$\mathrm{C}_{5}^{4} 3 \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	61.11	6.50	9.50	61.20	6.63	9.27
19	SH	$\mathrm{C}_{2} \mathrm{H}_{5}$	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	210*211	70	a	$\mathrm{C}_{14} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	60.86	5.84	10.10	60.75	5.57	10.40
20	II	$\mathrm{Cr}_{2} \mathrm{H}_{3}$	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	172-173			$\mathrm{C}_{44} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	69.80	6.10	9.98	59) 58	6.25	9.87
21	SH	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{3}$	175-177	50	a	$\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	62.05	6.25	9.65	61.92	6.16	9.43
22	H	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	CH_{3}	$\mathrm{C}_{6} \mathrm{H}_{5}$	151-152			$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	61.11	6.50	9.51	61.08	6. 47	9.44
23	SH	CHH_{3}	CH_{3}	2-Thienyl	162-164	61	a	$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$	49.25	4.51	10.44	49.42	4.43	10.74
24	H	CH_{3}	CH_{3}	2-Thienyl	137-138			$\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S} \cdot \mathrm{HCl}$	48.44	4.81	10.27	48.70	4.87	10.45
25	SH	CH_{3}	CH_{3}	2-Pyridyl	155-156	ca. 30	b	$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	54.75	4.98	15.96	54.85	5.40	15.84
26	II	CH_{3}	CH_{3}	2-Pyridyl	181-183			$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	47.38	4.97	13.82	47.55	5.31	13.56
27	sH	CH_{3}	CH_{3}	3-Pyridyl	197-198	37	b	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$	54.75	4.98	15.96	54.55	5.06	15.48
28	II	CH_{3}	CH_{3}	3-Pyridyl	$184 \cdot 187$			$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \cdot 2 \mathrm{HCl}$	47.38	4.97	13.82	47.70	5.06	13.79
29	SH	CH_{2}	CH_{3}	4-Pyridyl	186-187	50	b	$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$	54.75	4.98	15.96	55.08	5.17	16.05
30	H	CH_{3}	CH_{3}	4-Pyridyl	81-82			$\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	62.32	5.67	18.57	62.50	5.81	18.38
31	H	CH_{3}	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	142-143		c	$\mathrm{C}_{44} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	59.89	6.10	9.50	59.64	6.29	9.64
32	II	CH:	$n-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{4}$	156-157		c	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{IICl}$	61.11	6.50	9.51	60.87	6.27	9.34
33	H	CH_{3}	$i-\mathrm{C}_{3} \mathrm{H}_{7}$	$\mathrm{C}_{6} \mathrm{H}_{3}$	175-181		c	$\mathrm{C}_{6} \mathrm{H}_{48} \mathrm{~N}_{4} \mathrm{O}_{2} \cdot \mathrm{HCl}$	61.11	6.50	9.51	61.09	6.63	9.63
34	H	CH_{3}	$n-\mathrm{C}_{4} \mathrm{H}_{9}$	$\mathrm{C}_{6} \mathrm{H}_{3}$	139-140		c	$\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	62.63	6.86	9.07	62.03	7.05	9.10
35	H	CH_{3}	$n-\mathrm{C}_{4} \mathrm{H}_{11}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	136-137		c	$\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	63.25	7.18	8.68	6:3.39	7.10	8.94
36	H	CII_{3}	$\mathrm{CH}_{2} \mathrm{CH}-\mathrm{CH}_{2}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	135-136		c	$\mathrm{C}_{17}, \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	61.54	5.85	9.67	61.53	5.69	9.56
37	H	CH_{3}	$\mathrm{CH}_{2} \mathrm{C} \equiv \mathrm{CH}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	92)-93		c	$\mathrm{C}_{1} \mathrm{H}_{44} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.85	5. 5.5	11.02	71.14	5.70	11.02
38	H	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$	$\mathrm{C}_{6} \mathrm{H}_{3}$	85-87		c	$\mathrm{C}_{4} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}$	51.86	5.29	8.64	51.61	5. 40	8.38
39	H	CH_{3}	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCHH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	65-67		c	$\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O} \mathrm{O}_{4} \cdot \mathrm{HCl}$	57.97	6.16	9.01	57.86	(6. 42	8.85
40	II	CH_{3}	$\mathrm{CH}_{2}-<$	$\mathrm{C}_{6} \mathrm{H}_{5}$	150-15]		c	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	62.64	6.24	9.13	62.66	6.26	9.20
41	H	CH_{4}	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{ClHCH}_{3}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	139-140		c	$\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	62.64	6.24	9.13	62.36	6.29	8.93
42	H	CH_{3}	$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	153-154		c	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	66.56	5.59	8.17	66.73	5.59	8.10
43	H	$\mathrm{C}_{2} \mathrm{H}_{4}$	$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	165-166		c	$\mathrm{C}_{6} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \cdot \mathrm{HCl}$	61.11	6.50	9.51	60.96	6.23	9.80

「able ll
Pharmacinocical Dara

			Safety ratic． $\mathrm{L}_{1} \mathrm{D}_{50} / \mathrm{HD}_{50}$ （confiderice liuitss	1）uration of action． min．
$1.1(0.88-1.3)$	2．9（2．4－3（）	35 （ $20-43)$	12（9，0－16）	30
0．75（0．53－1．1）	2．9（2．3－3．3）	$\underline{29}(18-26)$	S．0（0，－－-10$)$	80
0．79（0．53－1．2）	$3.0(1) 4-3.7$	$24(20-28)$	－（0）（0．1－11）	$\underline{-4}$
1．3（0．55－3．1）	$4.4(3.5-5.6)$	20）（33－73）	117．1－1si	3：）
$1.3(0.73-3.3)$	4．7（3．9－5．7）	38131－46）		24
$\cdots 0(1.429)$	（ $3.3(4.3-9.3)$	5－ 4 － 1 －	9． 1 （4．4－19）	46
$20(1+3.0$	$6.5(4.58 .8$	3.5045	¢， 5 （3）3－9，0）	is
$\underline{2} 5(2.0-3.2)$	（6．6（4．9－8．9）	$3663044)$	－5．0） $3.8-5.8$	34
1．5（1 1－2－	9， $2(53-10)$	标（49－0）		36
1． 4 （4．6－6．3）	11 （9）－－13）	洨（4）－70）	A． $2(4.1-6$ ）	24
Toxie	Inactive	（60）（3）－60	lumetive	hatactive
$3.6(2.8-4.7)$	$17(1+20$	S 3 （ $60-10.5)$	－0（3．7－6．7）	1 NO
40 （30－54）	103（31－131）	$\because 10(1,93.2 \times \infty)$	$2.0(1.4-3.0)$	>200

Phenobarbital sodium

portionwise and with stirring to a mixture of 80 ml ．of nitric： acid and 200 ml ．of water containing 0.50 g ，of sodiunt nitrite； the temperature was kept at $33-38^{\circ}$ ．Upon completion of the addition，stirring was continued for another hour，after which time the solution was rendered alkaline by addition of sodinm （arbonate．The basic product was renoved by ether extraction． Addition of HCl in isopropyl alcohol to the dried ethereal solution finmished $61.0 \mathrm{~g} .(92,6)$ of desired product，m．p．170－17：${ }^{\circ}$ ． Recrystallization from methyl aloohol ether raised the melting point to 17：-174° ．
 10．50．Fonnd：C， $58.63 ; \mathrm{H}, 5.94 ; \mathrm{N}, 10.75$.
DL－1－（1－Phenethyl）imidazole－5－carboxylic Acid．－－To a solution of 100 g ．of sodium hydroxide in 250 ml ．of water was added 100 g．（ 0.383 mole）of 2．Upon refluxing for 1 hr，the solution was diluted with 250 ml ．of water；addition of 150 g ．of acetic acid gave 73 g ．of solid product，m．p． $186-188^{\circ}$ ，representing a 95% vield．An analytical sample，prepared from water，melted at 188－189
 C．66．78；H， 5.42.

DL－1－（1－Phenethyl）imidazole－5－carboxylic Acid Chloride Hy－ drochloride．－The carboxylic acid（ 73 g ．， 0.34 mole）was added to 220 ml ，of thionyl chloride．Refluxing this mixture for 1 hr．， followed by addition of isopropyl ether gave，upon cooling， 79 g ． of product，melting at $148-149^{\circ}$ ．Esterification of the acid chlo－ ride by the usual methods gave compounds $21-42$ ；the preparation of $\mathbf{3 6}$ exemplifies such a conversion．

DL－1－（1－Phenethyl）imidazole－5－carboxylic Acid Allyl Ester
Hydrochloride（36）．－A mixture of 4 g ．（0．0148 mole）of acid chloride hydrochloride in 30 ml ．of allyl alcohol was refluxed for 3 hr ．The solvent was then removed and replaced with water． Basification and ether extraction gave a solution of the base． which was isolated as the hydrochloride salt，m．p． $135^{-}-130^{\circ}$ （isopropyl alcohol－isopropyl ether），yield 3.0 g ．
 （）．57．Found：C，61．53；H，5．69：N， 9.56 ．

Physical properties of 46 and 47 ，together with those of their －mercapto precursors，are given below；their preparations paralleled the ones offered for 1 and 2.
bi－（2－Phenethyl）－2－mercaptoimidazole－5－carboxylic acid methyl ester，obtained in 70% yield，melted at 164－165 ．

Anal．Caled．for $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}: \mathrm{C}, 59.53 ; \mathrm{H}, 5.38 ; \mathrm{N}, 10.68$. Found：C， $59.77 ; \mathrm{H}, 5.59 ; \mathrm{N}, 10.40$ ．

DL－（2－Phenethyl）imidazole－5－carboxylic Acid Methyl Ester （46）．－The base，upon recrystallization from benzene－petroleun ether，melted at 63－64 ${ }^{\circ}$ ．

Anal．Caled．for $\mathrm{C}_{13} \mathrm{H}_{41} \mathrm{~N}_{2} \mathrm{O}_{2}: ~ \mathrm{C}, 67.81: \mathrm{H}, 6.13: \mathrm{N}, 12.17$. Found：C，67．98；H，6．21；N， 11.92 ．
pL－1－（1－Phenyl－2－propyl）－2－mercaptoimidazole－5－carboxylic Acid Methyl Ester．－The compound，obtained in 38% yield
from α－methyphenethylamine，melted at $140-141^{\circ}$（afinems nethyl alcohol）．

Inal．Caled．for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~s}: ~(\mathrm{C}, 60.86 ; \mathrm{H}, 5.84 ; \mathrm{N}, 10.1$. Fumin：（,$~ 60.7 \overline{5} ; ~ H, 6.64 ; ~ N, 10.1$.

DL－1－（1－Phenyl－2－propyl）imidazole－5－carboxylic Acid Methyl Ester Hydrochloride（47）．－－An ：analytical sample，prepared from． methyl aloohol－ether，melted an 165－166 ．
 ！！！s．Fomm：（．， $09.04: H, 6.10$ ：N，10．2．

Pharmacology．－－The results were obtained as lohlows．Acueoms shations of the hydrochloride salts were administered by rapid intravenoms injection to voung female Wistar rats（ $190 \pm 10 \mathrm{~g}$ ）． ＇lhe animals were then observed for a period of 220 min．to de－ remine the following parameters：（1）onset and duration of ataxia，（2）onset and duration of＂hypnosis，＂（3）lethal effects， and（4）miscellaneons behaviornl effects，such as excitation， moscular twitches，or canvulsions．

In order to avoid subjective bas and to secmre adequate ran－ domization，all observations were made by unbiased techmicians working with coded solntions，earh rat of a given experimental session receiving a different type of treatment．Groups of 10 rats were used per dose level（160，80，40，．． $2 . \overline{5}, 1.25 \mathrm{mg} . / \mathrm{kg}$ ． and each componor was investigated at 6 or more dose levels． ranging from complete inactivity to， 100 o lednality．Ataxia was scored asing an ordinal scale for ranking the degree of confi－ dence of the observer in his own judgment．${ }^{3}$

Hypmotic activity was determined by placing the ammals on their backs on ：um momated metal surface $\left(30^{\circ}\right)$ ，disappearance ol the righting reflex being taken as metsure of activity．The duse level at which this state manfested itself in 50 c．，of the animals is considered the HO_{i} valne．Similarly the $\mathrm{AD}_{\mathrm{a} 0}$ vahe cor－ responds to the dose level prodncing ataxin in half of the animals．
 majority of fabalitics occurred within in few hours after injection． The duration of attion is defined as the graphically estinsted nechan valne for the dumation of ataxia at the HD H_{0} dose level． The symbers $\mathrm{AD}_{\text {int }}, \mathrm{HD}_{\text {ien }}$ and $\mathrm{H} \mathrm{D}_{\text {a }}$ are median effective dose levels（ED D_{a} values），expressed in mig． kg ．of hody weight．All symbols defined above were urrived at by means of probit annlysis using the chassical graphical method of Ihtehfield and Wilooxm （P0．05）．

Results

As seen from Table II，a number of 1 －（1－aralkyl）－ imidazole－ī－carboxylic acid esters exhibit extrenely potent and slort－acting liypnotic activity in rats；fur－ themore，they are relatively atoxic when their thera－

[^1]peutic ratios are conıpared to those of pentobarbital or phenobarbital.

Prelininary structure-activity correlations led us to make the following general statenients. (1) The nature of the N -substituent is critical. One-carbon interruption between the aryl moiety and the nitrogen atom as well as alkyl branching of the α-carbon are prerequisites for sustaining hypnotic activity. Lengthening of the side chain to include two carbon atonss, with or without branching (i.e., 46 and 47), or ounission of branching, à la $\mathbf{4 5}$, or direct attachument of the aryl group upon the nitrogen (44), leads to total loss of hypnotic properties. (2) Differences in hypnotic potency among the various esters are relatively minor. The presence of the ester moiety per se is essential;
the corresponding carboxylic acids are totally inactive. A detailed pharnacological study, including test results obtained in other animals, will be published elsewhere.

Acknowledgment.-We are indebted to Messrs. T. Van Offenwert and A. Knaeps for the preparation of a number of starting materials and to Messrs F. Sels and W. Verkest for analytical determinations reported herein. Pharmacological assistance was rendered by Mr. F. Leenaerts. We also extend our thanks to Dr. C. van de Westeringh for his participation in fruitful chemical discussions during the course of this work. Financial support of the "Instituut tot Aanmoedinging van het Wetenschappelijk Onderzoek in Nijverheid en Landbouw' ${ }^{\prime \prime}$ is gratefully acknowledged.

Hypocholesteremic Agents. III. ${ }^{1}$ Basic Carbinols and Related Compounds

James H. Short, Ursula Biermacher, Daniel A. Dunnigan, G. Frederick Lambert, Donald L. Martin, Carl W. Nordeen, and Howard B. Wright

Organic Chemistry Department and Pharmacology Department, Research Division, Abbott Laboratories, North Chicago, Illinois
Received August 21, 1964

Abstract

A series of 58 basic carbinols and related compounds has been synthesized, mostly by means of the Grignard reaction, and examined for hypocholesteremic activity. One compound, $\alpha-[4$-(2-diethylaminoethoxy $)$ phenyl]-α-phenyl- 5 -acenaphthenemethanol, proved to be considerably more potent than triparanol in both rats and mice.

Much effort in recent years has been expended in the search for chemical agents which will significantly lower the blood cholesterol level of hypercholesteremic individuals. The rationale behind use of such drugs is the belief, not conclusively proven, that formation of atherosclerotic plaques is directly connected to the amount of cholesterol in the blood. ${ }^{2,3}$ Although a number of drugs are known to possess hypocholesteremic activity, none are entirely satisfactory. ${ }^{3,4}$ In 1959, triparanol was introduced for this purpose, and both animal and clinical studies indicate it to be both effective and consistent in its activity. ${ }^{\text {b, } 6}$ It was soon discovered, however, that, as the level of cholesterol is reduced, the level of its biogenetic precursor, desmosterol, is increased and total sterol concentration of the plasma is not reduced as much as determinations of cholesterol would seem to indicate. ${ }^{2.3,6}$ A further possible disadvantage of triparanol is its lack of potency. A typical dose for human patients is 250 mlg . daily. ${ }^{6}$ For drugs which are given over long periods of time, it might be advantageous to be able to give one effective at a lower dose. This work, then, was undertaken for two reasons; first, to find a drug similar to triparanol effective at a dose of no more than 50 mg ./

[^2]day, and, second, one which would give a better reduction in total sterols.

Chemically, triparanol (I) is a derivative of $1,1,2$ triphenylethanol. As such, there are many possible modifications which might lead to interesting struc-

I
ture-activity relationships. In a previous publication, ${ }^{7}$ we established that the 4 -(2-(diethylaminoethoxy)phenyl group may be replaced by a pyridine ring and activity naintained. The most potent compound of that series is 1,1-diphenyl-2-(4-pyridyl)etlianol. Its potency is about the same as that of I. Investigation of pyridine derivatives is continued in this paper, and modifications of the diethylaminoethoxy side chain have been studied extensively. Triarylmethanol homologs have also been investigated, as has replacement of benzene rings with polynuclear ring systems. In addition, a group of tetrahydrofuran derivatives and some ethylene derivatives has been synthesized.

Chemistry.-Four general methods were used to obtain the carbinols (IV, VI, IX, and XI), ethers, and ethylene derivatives described in Table I.
(T) H. B. Wright, D. A. Dunnigan, and U. Biermacher, J. Med. Chem. 7, 113 (1964).

[^0]: (1) K. W. Wheeler, "xledicinal Chemistry," Vol. Vl, dolm Wiley an Sons, Inc., New York, N. Y., 1963, p. 1.
 (2) R. C. Jones, J. Am. Chem. Soc., 71, 644 (1949).

[^1]: （ia）P．A．I．Janssen，fisuchopharmanologia．2， 141 （1061）．

[^2]: (1) Paper II: M. Freifelder and H. B. Wright. J. Med. Chem., 7, 664 (1964).
 (2) "New and Nonofficial Drugs, 1962." J. B. Lippincott Co.. Philadelphia, Pa., 1962, p. 616.
 (3) R. H. Furman and C. W. Robinson, Jr., Med. Clin. N. Am., 45, 935 (1961).
 (4) C. Moses, Angiology, 13, 59 (1962).
 (5) W. Hollander and A. Chobanian, BMQ. Boston Med. Quart., 10, 37 (1959).
 (6) (a) M. Friedman, S. O. Byers, and R. H. Rosenman, Progr. Cardiovascular Diseases, 4, 419 (1962): (b) W. Hollander, A. V. Chobanian, and R W. Wilkins, J. Am. Med. Assoc., 174, 5 (1960).

